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Abstract 
XML filtering solutions developed to date have focused 
on the matching of documents to large numbers of que-
ries but have not addressed the customization of output 
needed for emerging distributed information infrastruc-
tures. Support for such customization can significantly 
increase the complexity of the filtering process. In this 
paper, we show how to leverage an efficient, shared path 
matching engine to extract the specific XML elements 
needed to generate customized output in an XML Mes-
sage Broker. We compare three different approaches that 
differ in the degree to which they exploit the shared path 
matching engine. We also present techniques to opti-
mize the post-processing of the path matching engine 
output, and to enable the sharing of such processing 
across queries. We evaluate these techniques with a de-
tailed performance study of our implementation. 

1. Introduction 
For distributed environments including Web Services, data 
and application integration, and personalized content deliv-
ery, XML is becoming the common wire format for data. In 
this emerging distributed infrastructure, XML message bro-
kers [20][25][26] will play a key role as central exchange 
points for messages sent between applications and/or users. 
The main functions of such brokers are: filtering, transfor-
mation, and routing. Filtering matches messages to a large 
set of queries that represent the data interests of specific us-
ers, applications, or organizations. Transformation restruc-
tures matched messages according to recipient-specific re-
quirements. Routing involves the transmission of the custom-
ized data to the recipients. 

Recently, there have been a number of systems devel-
oped for XML filtering [1][3][7][8][13][14][17], where the 
queries typically involve path expressions that refer to the 
structure of the XML data items. The most efficient filtering 
systems exploit commonality among queries via shared proc-

essing of the path expressions.  
The work we describe in this paper is aimed at develop-

ing the next level of functionality, i.e., transforming the 
XML messages on a query specified basis, in order to pro-
vide customized data delivery and to enable cooperation 
among disparate, loosely coupled services and applications. 
High-capacity brokering systems must be capable of support-
ing potentially tens of thousands of simultaneous queries. 
Thus, approaches that process queries individually are not 
adequate for our purpose. Since shared processing of path 
expressions has been shown to be an efficient and scalable 
foundation for the current generation of XML filtering sys-
tems, we start with such an engine, which we call a shared 
path matching engine, and develop alternatives for building 
customization functionality on top of it. We address the fol-
lowing fundamental questions: 
 

• How, and to what extent can a shared path matching en-
gine be exploited for customized result generation? 

• What additional post-processing of path matching output 
is needed to support message customization, and how can 
this post-processing be done most efficiently?  

 
By way of answering these questions, we have developed 

three techniques that differ in the extent to which they push 
work down into the matching engine. As we will show, there 
is an inherent tension between shared path matching and 
customized result generation. That is, aggressive path sharing 
requires more sophisticated post-processing.  

Given an efficient shared path matching engine, it is easy 
for post-processing to become the dominant component of 
query processing cost. In order to reduce the cost of post-
processing we have developed provably safe optimizations 
based on query and DTD (if available) inspection that enable 
us to eliminate unnecessary operations and choose more effi-
cient operator implementations for post-processing of indi-
vidual queries. 

We have also developed a set of techniques for sharing 
post-processing work across multiple queries. These tech-
niques are similar in spirit to approaches used in more ge-
neric Continuous Query processing systems, but as we will 
show, are highly tailored for the specific case of large-scale, 
high-volume XML message brokering.  

We have implemented all of the above techniques on top 
of the YFilter shared path matching engine [8][11] and have 
evaluated their effectiveness with a detailed performance 
analysis of the implementation. 

The paper proceeds as follows. Section 2 presents our 
problem definition. Sections 3 and 4 present three alternative 
solutions and a set of optimizations for them. Section 5 ad-
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dresses shared post-processing. Section 6 presents our ex-
perimental results. Section 7 covers related work. Section 8 
presents conclusions. 

2. Background 

2.1 Architectural Overview 
Our proposed XML message broker architecture is shown in 
Figure 1. The primary inputs are the queries that represent 
subscriptions and the XML messages themselves.  

Queries become active as soon as they arrive at the mes-
sage broker. Inside the broker, an arriving query is parsed for 
use by the Query Processor, where the execution plan of the 
new query is merged with the existing queries without re-
compiling any of them.  

Incoming messages are filtered and transformed on-the-
fly for the entire set of queries. These messages need not 
conform to DTDs (Document Type Definitions) but, as we 
describe later, such conformance can be exploited1. Inter-
nally, the broker runs an incoming message through an 
event-based XML parser. Parsing events are passed to the 
query processor to drive the query execution. They are also 
used to incrementally construct a node-labeled tree, which 
provides materialization of the parsed message for later use. 
The nodes are assigned integer identifiers according to a pre-
order traversal of the tree. 

The query processor produces output in an intermediate 
format that contains identifiers of nodes in the parsed XML 
message organized for efficient translation into customized 
output messages. The intermediate output of the query proc-
essor is fed to the “message factory”, which combines the 
element tags in queries with the intermediate output and for-
wards the resulting messages for delivery. 

We describe the query processor in more detail, after first 
presenting our problem definition in the following section. 

2.2 Problem Statement 
We focus on user query specifications written in a subset of 
XQuery [2]. Consider “Query 1” below, which is based on 
the Book DTD from the XQuery use cases [6]: 
 

<sections> 
{ 
    for       $s in document(“doc.xml”)//section 
   where   $s//figure/title = “XML processing” 
   return   <section>    

{ $s/title }  
{ $s//figure } 

                 </section> 
 } 
</sections> 
 

This query specifies that for each section containing a figure 
whose title is “XML processing”, a “section” element con-
taining the title of that section and all of its figures should be 
returned. Note that in a message conforming to the Book 

                                                                 
1 In applications such as web services, XML Schema is more 

widely used than DTDs. Since the structural information we exploit 
is provided by both types of definition, XML schema can be used 
under the same conditions as DTDs in this work.  

DTD, section elements may contain other sections as well as 
figures and other elements. This query requires results to be 
returned for all sections matching the query in the same or-
der that the matching sections appear in the message.  

More specifically, the queries we consider consist of a 
single FLWR (i.e., For-Let-Where-Return) expression en-
closed in an element defined by a constant tag. The FLWR 
expression contains:  

 
• A for clause containing a variable name and a path ex-

pression; followed by 

• An optional where clause that contains a set of conjunc-
tive predicates, each of which takes a form of a triplet: 
path expression, op, constant; followed by 

• A return clause that contains interleaved constant tags 
and path expressions, where all constant tags have a 
matching close tag. 
 

Our current implementation does not support the let clause. 
The semantics of these queries is as follows: The for 

clause creates an ordered sequence of variable bindings to 
document elements (or in our case, to nodes in the parsed 
XML message). The where clause, if present, restricts the set 
of bindings passed to the return clause. The return clause is 
invoked once for each variable binding. At each invocation 
of the return clause, tags cause the construction of new XML 
fragments and path expressions select nodes from the current 
variable binding. The final result of the FLWR expression is 
an ordered sequence of the results of these invocations.  

For conciseness, we refer to the path expression in a for 
clause as the “binding path”, those in a where clause as 
“predicate paths”, and those inside a return clause as “return 
paths”. We require that the predicate and return paths of a 
query be relative to the binding path of that query (i.e., they 
are prefixed by the variable name used in the binding path).  

A path expression consists of a sequence of location 
steps. We support location steps with child “/” and descen-
dent “//” axes and element name tests.  Path expressions con-
taining such location steps are referred to as navigation paths 
in this paper. We also allow location steps to contain simple 
predicates that compare the attributes or text data of elements 
to a constant. In this work, binding paths can contain an arbi-
trary number of simple predicates in any location step. A 
predicate path is a navigation path with a simple predicate 
attached to the last location step, and itself is a complex 

Figure 1:  XML message broker architecture
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predicate imposed on its binding path. A return path is sim-
ply a navigation path.2  

As stated in Section 2.1, the output of the query proces-
sor is an intermediate representation that is passed on to the 
message factory component of the broker.  In this representa-
tion, the nodes selected from the message are organized into 
a sequence of groups, such that each group corresponds to a 
single invocation of the return clause. Inside a group, nodes 
are contained in a sequence of lists. The sequencing of lists 
corresponds to the ordering of the return paths in the return 
clause. Each list contains the nodes matching the return path 
in their document order. For example, the output of Query 1 
would have the following format: 

…. 
sectioni:     [ titlei1 ],      [ figurei1 , …]  
sectioni+1:  [ title(i+1)1 ],  [ figure(i+1)1 , …]  
…. 

where sectioni represents a group, and the numbering …, i, 
i+1, … represents the ordering of those groups. The se-
quence inside a group consists of a list of identifiers of title 
nodes (in our example there is only a single title per section) 
followed by a list of identifiers of figure nodes. In the re-
mainder of this paper, we refer to this intermediate represen-
tation as the groupSequence-listSequence format.  

Having described our model of queries and output, we 
can now formulate the core message broker functionality we 
provide as follows:  

Given a large set of queries written in the specified query 
language, efficiently extract message components in the 
groupSequence-listSequence format for all queries for each 
message arriving at the message broker.  

2.3 Query Processor Details 
In our system, as shown in Figure 1, the query processor 
consists of two main runtime components: a shared path 
matching engine and a customization module. Given a parsed 
query, the optimizer in the query processor inserts navigation 
paths from the query into the shared path matching engine, 
and adds the execution plan for the remainder of the query to 
the customization module. For an incoming message, the 
shared path matching engine takes the parsing events to 
match its contained navigation paths. The customization 
module further processes the output of the path matching 
engine to generate customized results.  

A key advantage of this design is that it leverages the 
prior work on building scalable, shared XML path matching 
engines [1][3][7][8][11][13]. We chose to base our system 
on YFilter [8][11], a high-performance shared path matching 
engine that we built previously. YFilter employs a single 
Non-Deterministic Finite Automaton to represent the full set 
of navigation paths, and supports shared processing of the 
common prefixes of all these paths. A recent study by Bruno 
et al. [3] shows that YFilter is particularly effective for short 
messages and large sets of queries; precisely the environment 
we anticipate for high-volume XML message brokers. 

Our approaches to customized result generation are de-
veloped in the context of the particular output format pro-

                                                                 
2 The approaches we describe in this paper can be extended to sup-

port more general XQuery scenarios. Due to space limitations, we 
refer the interested reader to [9] for further details. 

vided by YFilter. For a navigation path matched by an in-
coming message, YFilter delivers a stream of “path-tuples” 
each of which represents a unique match of this path. A path-
tuple contains one field per location step in the path, and the 
value of the field is the identifier of the message node bound 
to the location step. When multiple paths are matched by a 
message, YFilter delivers its output as streams of path-tuples, 
one stream for each path.  

Figure 2(a) shows a node-labeled tree for a message 
fragment, where nodes are annotated with their assigned ids. 
Path-tuple streams that are output from YFilter for different 
paths are illustrated in Figure 2(b). Take the stream for the 
path “//section//figure”. It contains three path-tuples. Each 
path-tuple contains two node ids, representing a unique com-
bination of the two location step bindings.  

YFilter guarantees that path-tuples in each stream are 
produced such that the node ids in the last field of the path-
tuples appear in monotonically increasing order. This stream 
order is exploited in our processing algorithms as described 
in the following sections. It is also important to note that 
ordering on other fields of path-tuples is not guaranteed by 
YFilter. 

3. Basic Approaches 
In this section, we present three different query processing 
approaches that differ in the extent to which they exploit the 
path matching engine. In all of them, a post-processing phase 
is applied to the output of the matching engine to generate 
the complete groupSequence-listSequence output.  This post-
processing is done via query plans using relational-style op-
erators. In the approaches described in this section, we use 
one such query plan per XQuery query (i.e., the post-
processing phase is not shared).  We examine how to share 
post-processing work in Section 5. 

It should be noted that much of the subtlety of develop-
ing solutions to this problem arises from the inherent tension 
between shared processing at the lower level (which is essen-
tial for good performance) and customized query result gen-
eration. The matching engine returns the path-tuples in a 
stream in a single, fixed order to all queries that include the 
corresponding path. The paths, however, may be used quite 
differently by the various queries, and thus potential incon-
sistencies such as unintended duplicates or ordering prob-
lems can arise with aggressive path sharing (we will discuss 
both of these cases in detail shortly). In the following, we 
describe our approaches in order of increasing path sharing, 
and focus on how the additional complications raised by 
increased sharing are addressed. The approaches are additive; 

Figure 2: An example of YFilter output 
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that is, the approaches exploiting increased sharing incorpo-
rate those that use less. 

3.1 Shared Matching of “For” Clauses 
The first approach we describe uses the path matching engine 
to process only binding paths (i.e., paths that appear in for 
clauses).  We begin by inserting the navigation part of the 
binding path from each query into the engine. Then, during 
the processing of a message, the output of the engine for 
each path is directed to the post-processing plans for its cor-
responding queries. We refer to this approach as PathShar-
ing-F.  Consider Query 2:  

     <figures> 
     {  
        for $f in document(“doc.xml”)//section[@id<=2]//figure 
       where  $f/title = “XML processing” 
       return  <figure>  { $f/image }   </figure> 
     } 
     </figures> 

Figure 3 highlights the post-processing plan for this 
query under PathSharing-F. In the figure, the multiple ar-
rows above the matching engine represent the streams of 
path-tuples (note that queries that have a common binding 
path share a common stream). The thick arrow denotes the 
stream used by Query 2, which contains the path-tuples 
matching the binding path “//section//figure”. In the 
following, we refer to the last field of these path-tuples as the 
binding field, because they contain the ids of the nodes that 
are actually bound by the binding paths. We refer to these 
nodes as the BoundNodes. The box above the thick arrow 
contains the post-processing execution plan. The operators in 
this plan are, from bottom-up:  

Selection. A selection operator is placed at the bottom of 
a query plan to evaluate any simple predicates (i.e., compari-
sons of the attributes or text data of elements to a constant) 
attached to a binding path. The evaluation is done for each 
path-tuple by checking predicates against the nodes refer-
enced by the path-tuple. Selection emits only those path-
tuples for which all predicates evaluate to True. 

Duplicate Elimination (DupElim). The XQuery specifi-
cation requires that duplicate nodes bound to a path be elimi-
nated based on the node identity [2]. Accordingly, we define 
duplicates in the stream for a binding path as path-tuples that 
contain the same node id in the binding field. 

Such duplicates arise when multiple path-tuples in a 
stream reference the same BoundNode. For example, con-
sider Query 2 and the XML fragment:  

“<section id=1> <section id=2> <figure> <title> XML 
       processing </title> </figure> </section> </section>”  

 
The matching engine outputs two path-tuples for the binding 
path. The first corresponds to “<section id=1> <figure>” and 
the second to “<section id=2> <figure>”. These two path-
tuples reference the same BoundNode, so the second could 
cause redundant work and produce a duplicate result.  

The DupElim operator avoids these problems by ensuring 
that each BoundNode is emitted at most once. In this case, a 
simple scan-based DupElim operator can be used because as 
described in the previous section, path-tuples in the stream 
are ordered by their binding field. It should be noted, how-
ever, that DupElim cannot be pushed before the selection, 
because it is not known which (if any) of the path-tuples 
referencing the same BoundNode will pass the selection. 

Where-Filter. This operator evaluates the where 
predicates on each path-tuple until a predicate evaluates to 
False or the entire where clause evaluates to True. Path-
tuples in the latter case are emitted. For each path-tuple, a 
predicate path is evaluated with a tree search routine that 
uses a depth-first search in the sub-tree of the parsed mes-
sage rooted at the BoundNode of the path-tuple. The search 
routine for a path returns True as soon as any node satisfying 
the predicate is found. The pseudo-code of this routine is 
omitted in the interest of space. 

Return-Select. This operator applies the return clause to 
the BoundNodes of the path-tuples that survive the Where-
Filter. It uses the tree search routine for each return path. 
Unlike the Where-Filter, however, the tree search routine 
here must retrieve all nodes matching a return path rather 
than stopping at the first match.  

Return-Select generates results in the groupSequence-
listSequence format. Each input path-tuple causes the crea-
tion of a new group. The ordering of return paths in the 
query defines the sequence of lists within each group.  For 
each list, the matches of the corresponding return path are 
placed in the order that they appear in the message. 

Recall that the results of a FLWR expression must be 
ordered in accordance with the order of the variable bindings 
of the for clause. Since the stream for the binding path is 
ordered in this way, and the remaining processing steps do 
not change that order, we are assured that the order produced 
by PathSharing-F is correct. 

3.2 Shared Matching of “Where” Clauses 
PathSharing-F only uses the path matching engine to process 
binding paths. The next approach, PathSharing-FW, in addi-
tion pushes the navigation part of predicate paths from the 
where clause into the matching engine to exploit further 
sharing. Recall that predicate paths are defined to be relative 
to the binding paths. Since the matching engine treats all 
paths as being independent, we must first extend the predi-
cate paths by prepending their corresponding binding path. 
For example, consider Query 3:  

<sections> 
{ 
    for       $s in document(“doc.xml”)//section 
   where   $s/title=“XML”  
         and $s/figure/title = “XML processing” 
   return   <section>  

Figure 3: A query plan using PathSharing-F
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                  { $s//section//title } 
                 { $s/figure } 
                </section> 
 } 
</sections> 

The first predicate path “/title” is transformed into 
“//section/title” and the second becomes “//section/figure 
/title”. These extended predicate paths, along with the bind-
ing path, are inserted into the matching engine. Note that 
since common prefixes of paths are shared in the matching 
engine, the extension of these paths does not add signifi-
cantly to their processing cost. 

As in PathSharing-F, the path-tuple streams for each 
query are then post-processed by a query plan that executes 
the remaining portion of that query. This arrangement is 
shown in Figure 4. The stream corresponding to a binding 
path is passed through a selection operator and a DupElim 
operator as before. The output of the DupElim operator is 
then matched with the streams corresponding to the predicate 
paths. The path-tuples resulting from the matching process 
are piped to a Return-Select that works as described before. 

In PathSharing-FW, the Where-Filter of PathSharing-F 
is replaced by a left-deep tree of semijoins with the binding 
path stream as the leftmost input. Recall that the predicate 
paths are extended by pre-pending them with the correspond-
ing binding path. Thus, the common field on which each 
semijoin will match is the binding field, i.e., the last common 
field between the binding path tuples and the predicate path 
tuples. The result of a semijoin, therefore, is a stream con-
taining only those binding path tuples that have matching 
predicate path tuples. Figure 4 shows an example for the 
leftmost semijoin. 

The semijoin operators can be implemented using a sim-
ple merge-based algorithm, if it is known that the predicate 
path streams are delivered in monotonically increasing order 
of BoundNode id.  In general, however, there are cases where 
such ordering cannot be assumed.  Consider the execution of 
Query 3, when applied to the following XML fragment: 

“<section> <section> <figure> <title> XML processing 
</title> </figure> </section> <figure> <title> XML process-
ing </title> </figure> </section>” 
 

In this case, the stream for the predicate path 
“//section/figure/title” would contain a path-tuple corre-
sponding to “section2 figure1 title1” followed by a path-tuple 
corresponding to “section1 figure2 title2”, where the subscript 

indicates the first or the second occurrence of the tag name. 
This stream is not properly ordered by the binding field (i.e., 
section). In such cases, since the binding path stream is or-
dered properly, we can use a hash-based implementation of 
semijoin where the binding path stream is used as the prob-
ing stream. Sufficient conditions for determining when the 
more efficient merge-based approach can be used are dis-
cussed in Section 4.  Note, however, that both approaches 
order the output correctly, resulting in semantics identical to 
those provided by PathSharing-F.  

A final note is that duplicates in predicate path streams 
are not a concern, because these streams are only used to fil-
ter binding path tuples that have passed a DupElim operator. 

3.3 Shared Matching of “Return” Clauses 
Our third alternative approach, PathSharing-FWR, aims at 
further increasing sharing by also pushing the return paths 
into the path matching engine. Return paths differ from 
predicate paths in that they do not constrain the set of match-
ing binding path tuples so the semijoin approach cannot be 
used for them. Instead, outer-join semantics are required. 

We require a slightly more specialized operator than a 
generic outer-join, however, because results must be gener-
ated in the groupSequence-listSequence format. Thus, we 
have implemented our own n-way outer-join operator, which 
we call OuterJoin-Select. As Figure 5 shows, OuterJoin-
Select takes as its leftmost input, the binding path stream 
resulting from the semijoins of the PathSharing-FW ap-
proach. It performs left outer joins on the binding field with 
each of the return path streams. Generation of the results in 
the required format is performed as part of the outer join 
processing. Each path-tuple in the binding path stream 
causes the creation of a new group. The outer join between 
this path-tuple and a return path stream results in a new list 
within the group, containing the node ids in the last field in 
the return path tuples that have matched the binding path 
tuple. If no such matches are found, an empty list is kept in 
the group for this return path. 

In our implementation, OuterJoin-Select builds hash ta-
bles for each of the return path streams and then probes them 
in a pipelined fashion using a single scan of the stream 
emitted by the semijoin tree. In this way, the output of this 
operator is guaranteed to be ordered by the binding field.  

 Note from Figure 5 that, DupElim operators are required 
on each of the return path streams to prevent duplicate results 
from being generated by OuterJoin-Select. Here, the notion 

Figure 5: A query plan using PathSharing-FWR
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of duplicates is defined on the combination of the binding 
field and the last field of the path-tuple, called the return 
field. 

Recall that a return path stream is always ordered by the 
return field. If it also arrives ordered by the binding field, a 
scan-based approach suffices for DupElim. Otherwise, 
hashing is used.  

As can be seen, PathSharing-FWR, the approach that ex-
ploits path sharing to the fullest extent, requires the most 
sophisticated post-processing. As we mentioned earlier, this 
complexity results from the tension between shared path 
matching and result customization. It is important to note 
that this problem cannot be easily solved in the path match-
ing engine. Consider a path expression that is the binding 
path in one query and a return path in another. In this case, 
the path-tuple stream produced for that path expression will 
be used (by different queries) as two different types of 
streams. Since the two types of streams have different no-
tions of duplicates, duplicate elimination cannot be done in 
the engine, but must be done in a usage-specific manner dur-
ing post-processing. Similar issues arise with the ordering of 
path-tuples expected by the different uses of the stream. 

4. Simplifying Post-Processing  
Duplicates and stream ordering are two fundamental issues 
that complicate post-processing for customized result genera-
tion. With additional knowledge however, it is sometimes 
possible to infer cases when duplicates cannot arise, or when 
path-tuples will arrive in a needed order.  In the first case, 
DupElim operators can be removed from the post-processing 
plans.  In the second case, cheaper scan or merge-based op-
erator implementations can be used in place of the more ex-
pensive hash-based ones.   

4.1 Sufficient Conditions 
We have derived a set of sufficient conditions that enable the 
detection of some situations where post-processing can be 
simplified. These conditions involve the presence of “//” 
axes in queries, and the potential for recursive elements (i.e. 
elements that have the same element name and contain each 
other) in the messages. The first type requires examining the 
queries, and the second can be checked by examining a DTD, 
if present. The claims involving a DTD utilize a DTD ele-
ment graph constructed as follows: Start at the root of the 
DTD and examine its child elements. If a node for a child 
element is not in the graph, create one. Then draw a directed 
edge from the parent element to each child element.  Repeat 
this for all elements.  

The conditions are described in the following five claims.  
Correctness proofs for these claims are given in [9].  Con-
sider a path expression p of m location steps, and the stream 
of path-tuples that match the path, with fields numbered 
1..m. 
Claim 1: If p contains at most one “//” axis, then there will 

be no duplicates in the stream of path-tuples matching p 
when the path-tuples are projected on field m. 

Claim 2: If p contains n, n > 1 “//” axes, then if the elements 
of the first n-1 location steps containing a “//” axis do not 
appear on a loop in the DTD element graph, then there 

will be no duplicates in the stream of path-tuples match-
ing p when the path-tuples are projected on field m. 

Claim 3: Partition p into two paths, one consisting of loca-
tion steps 1 to i, i < m, and the other being a relative path 
consisting of the rest of the path. If claim 1 or claim 2 in-
dicate that no duplicates exist for either path, then there 
will be no duplicates in the stream of path-tuples 
matching p when the path-tuples are projected onto fields 
i and m.   

Claim 4: If there is no “//” axis from location steps 1 to i, 1 ≤ 
i < m of p, then the stream of path-tuples matching p will 
be in increasing order when projected onto field i. 

Claim 5: If p contains one or more “//”axes within location 
steps 1 to i, then if for all steps j, j ≤ i containing a “//” 
axis, the elements of location steps j and i do not appear 
on the same loop in the DTD element graph, then the 
stream of path-tuples matching p will be in increasing 
order when projected onto field i. 

4.2 Optimization of Post-Processing Plans 
The preceding claims enable optimizations of post-
processing plans on a query-by-query basis as follows: 

• Claim 1 (and 2, if a DTD is present) is used to check if 
there can be any duplicates in the path-tuple stream for a 
binding path. Recall that duplicates for binding path tuples 
are defined on the binding field, the last field of binding path 
tuples. If duplicates are not possible, we remove the DupE-
lim operator for the binding path. 

• Claim 3, in conjunction with Claim 1 (and 2, if a DTD 
is present) is used to check the possible existence of dupli-
cates in the path-tuple stream for a return path.  Recall (from 
Section 3.3) that for return paths, duplicates are defined 
based on the combination of the binding field and the return 
field.  Thus, Claim 3, is tested with i set to the location of the 
binding field. If duplicates are not possible, we remove the 
DupElim operator for the return path. 

• Claim 4 (and 5, if a DTD is present) is used to check if 
all input streams for a semijoin or OuterJoin-Select are guar-
anteed to be ordered by the binding field, with i set to the 
location of the binding field. If yes, the merge based versions 
of these operators can be used in place of the more expensive 
hash-based implementation. These claims are also used to 
determine if a scan-based DupElim operator can be used for 
each return path.  

Consider the application of these claims for Queries 2 
and 3 of the previous section using Pathsharing-FWR.  As-
sume that the element “section” is on a loop in the DTD ele-
ment graph, but the element “figure” is not.   For Query 2 
(see Section 3.1), the tests for Claims 1-3 fail, and in fact, 
duplicates can arise, as described in Section 3.1.  The test for 
Claim 4 also fails because of the “//section//figure” in the 
binding path.  The test for Claim 5, however, succeeds be-
cause although the two location steps in the binding path 
both contain “//” axes and the element “section” is on a DTD 
element loop, the element “figure” is not on any loop with 
“section”. Therefore all predicate and return path streams are 
guaranteed to be ordered by the binding field. Thus, cheaper 
operators can be used for semijoin, Outer Join-Select and the 
DupElim on the return path stream.  

For Query 3 (see Section 3.2), if we apply Claim 1 (or 2) 
with Claim 3 to its query plan, all DupElim operators except 



 

  

the one for the return path “//section//title”, can be removed. 
The remaining DupElim operator results from the presence 
of two “//”s in the return path and the fact that element “sec-
tion” after the first “//” is on a DTD loop.  

The performance impact of these optimizations can be 
quite significant, and is studied in the experiments presented 
in Section 6. 

5. Shared Post-Processing 
So far we have presented three ways to share path matching 
among queries. A common feature of these approaches is 
that they all require a separate post-processing plan for each 
query. In this section we describe an initial set of techniques 
that can further improve sharing by allowing some of the 
post-processing work to be shared across related but non-
identical queries, in particular, ones that have path expres-
sions (and hence, path-tuple streams) in common. 

A prerequisite to the techniques we describe here is a 
way to determine which path expressions appear in multiple 
queries. The technique we use is to associate with each query 
a set of unique path identifiers corresponding to each of the 
paths that appear in it. These identifiers are returned by the 
path matching engine when the paths are initially inserted. 

 Our techniques are similar in spirit to techniques 
proposed for shared Continuous Query (CQ) processing over 
(typically non-XML) data streams [4][5][15][16][19]. Unlike 
the generic functionality provided in CQ systems, however, 
the approaches we use are highly tailored for large-scale 
XML filtering and customization. For ease of exposition, we 
focus the discussion on the post-processing plans used by 
PathSharing-FWR with DTD-based optimizations (as de-
scribed in the previous section), which are shown in the ex-
perimental results to outperform the other approaches in 
most cases.  

5.1 Query Rewriting 
As a first step to enhance sharing among queries, whenever 
the appropriate DTD is available we rewrite path expressions 
into a canonical form before inserting them into the path 
matching engine. This rewriting collapses certain expressions 
that are semantically (but not syntactically) equivalent, 
allowing their corresponding queries to share a single path-
tuple stream for the path. The rewriting focuses on removing 
superfluous “//” axes. A “//” axis is superfluous if the DTD 
shows that there is a single path from the element before “//” 
to the element after “//”.  If so, then we can replace “//” with 
the deterministic sequence of ‘/’ steps. For example, a return 
path “figure//image” can be rewritten to “figure/image” if the  
DTD shows that an image element can only be the child but 
not the descendent of a figure element.  

5.2 Sharing Techniques 
Most work on CQ systems considers selection and join op-
erators in a relational (or close to it) framework. In contrast, 
our work on XML message brokering is focused a subset of 
XQuery and involves a unique set of operators and a specific 
data flow through these operators, as presented in Section 3. 
The specialized nature of our work leads us to a particular set 
of sharing techniques, three of which are described below.  

Shared GroupBy for OuterJoin-Select: In the im-
plementation as described so far, each OuterJoin-Select op-

erator does its own hashing (or scanning) of the path-tuple 
streams it consumes for return paths (i.e., all but the leftmost 
stream).  When multiple queries share a common return path, 
this approach incurs redundant processing. This redundancy 
can be expensive, because return paths are not constrained by 
predicates; thus, these streams may carry a large number of 
path-tuples.  

We propose to remove this redundancy by placing 
GroupBy operators before OuterJoin-Selects on those 
streams that provide return path tuples. A GroupBy operator 
groups path-tuples in a return path stream by the binding 
field, so that the subsequent OuterJoin-Select can simply get 
all the return path tuples matching a binding path tuple by 
obtaining the matching group. Each GroupBy operator is 
shared by all OuterJoin-Selects that process the correspond-
ing return path. Thus, their overhead is expected to be small. 
Implementationwise, if the stream of a return path is ordered 
by the binding field, the GroupBy is scan based. Otherwise, 
it is hash based. Duplicate elimination, if necessary, is per-
formed in a scan-based manner in the GroupBy itself. 

Having addressed return path processing, we now turn 
our attention to the post-processing of binding paths and 
predicate paths.  

Selection-DupElim pull up: We first consider shared 
processing of semijoins among multiple queries. The com-
mon relational optimization of pushing selections below 
joins makes it difficult to share join processing. Pulling se-
lection up over joins [4] avoids this problem. In our setting, 
we pull selections with their subsequent DupElim operators, 
if present, over semijoins, and turn semijoins into shared 
joins. We currently only implement this technique for queries 
with a single predicate path. 

The technique works as follows.  Our semijoins are said 
to have “signatures” consisting of the path ids for their two 
inputs (a binding path on the left and a predicate path on the 
right). We create a shared join for all semijoins with the 
same signature. When converting a semijoin to a join, we 
retain all path-tuple fields for later use in selections. To be 
consistent with semijoin semantics, our shared joins are also 
implemented to preserve the order of the left input stream. 
The decision on merge- or hash- based implementation car-
ries over from semijoins to shared joins. 

Shared selection: Above a shared join operator, se-
lections can be grouped by their signatures [5][4][15][19]. In 
the XML setting for our problem, a predicate signature is a 
quadruplet (path id, level, attribute name, operator), where 
the level specifies the location step in the path containing the 
predicate. For sharing, we currently only consider a single 
predicate per path. Given this restriction, the signature for a 
selection above a join is simply the pair of predicate signa-
tures from the  joined paths. The constant of a selection sig-
nature is the pair of constants in the two predicates from the 
joined paths. Selections with the same signatures are re-
placed by a shared selection where different constants are 
merged into a single index. A shared selection can have mul-
tiple outputs, one for each constant of the selection signature 
matched by the XML data. 

Shared joins may produce path-tuples containing the 
same node id in the binding field. Fortunately, shared joins 



 

  

pre-serve the order on the binding field in their output, so 
scan-based DupElim can be used on the selection outputs. 

An example of a shared post-processing plan is given in 
Figure 6. Here a box annotated with ‘*’ means there is a set 
of such operators. On top of the path matching engine there 
is a set of merged plans sharing joins and selections, and a 
set of GroupBy operators shared by OuterJoin-Selects. Each 
OuterJoin-Select takes the left input from one output of a 
merged plan and the rest of its inputs from the GroupBys.  

5.3 Query Plan Construction and Execution 
The construction of the shared post-processing plans is done 
incrementally. When a new query is entered into the broker, 
we first construct a standalone post-processing plan for the 
query. We then determine its relationship to the current 
shared plans by examining its path ids and signatures. 
Operators in the new plan are either merged with existing 
ones or result in the creation of new branches.  

The execution of such large-scale shared query plans is a 
non-trivial issue. NiagaraCQ [4][5] placed a split operator to 
direct the output of one operator to all the subsequent opera-
tors. That operator, however, copies tuples (or pointers to 
tuples) when multiple subsequent operators require them. We 
experimented with a split operator copying tuple pointers in 
our initial implementation, and found that it imposed a sig-
nificant performance overhead. CACQ [19] avoids this prob-
lem using tuple lineage, which records the operators that a 
tuple has passed or needs to pass inside the tuple itself. The 
overhead of tuple lineage, however, increases with the num-
ber of queries.  

In our work, we used an alternative technique that places 
the pointers to path-tuples in each output of an operator in a 
data structure called tpList, and lets all the subsequent opera-
tors share the tpList(s) for their input. During query plan 
construction, each operator allocates one or more tpLists; 
each subsequent operator must remember which tpList to 
read from. Most operators have a single tpList. There are two 
exceptions, however. The path matching engine requires a 
tpList per path-tuple stream and a shared selection requires a 
tpList per constant of its signature. The tpLists in the latter 
cases can be instantiated lazily so they incur overhead only if 
they are actually used.  

During post-processing execution, each operator places 
the pointer to each output path-tuple to one of its tpLists. 
Upon completion of an operator, all the subsequent operators 
read from the desired tpLists and start their execution. A 
possible disadvantage of this technique is that the scheduler 

has to check all the subsequent operators even though some 
tpLists are known to be empty. Our experimental results in 
Section 6.5 show that this overhead is quite small in practice.   

6. Experimental Evaluation 
We implemented the techniques described in the preceding 
sections using the YFilter shared path matching engine. In 
this section, we present the results of a detailed performance 
study of this implementation. We first compare the perform-
ance of the three basic approaches with and without optimi-
zations when individual post-processing plans are used for 
distinct queries. We then examine the scalability of these 
approaches and the impact of shared post-processing. 

6.1 Experimental Setup 
Both YFilter and our message brokering extensions are writ-
ten in Java. All of the experiments were performed on a Pen-
tium III 850 Mhz processor with 768MB memory running 
IBM J2RE 1.3.0 on Linux 2.4. We set the JVM maximum 
allocation pool to 600MB, so that virtual memory activity 
had no influence on the results. 

To test the system, we required generators for both 
documents and queries. For documents, we developed a 
document generator based on IBM’s XML Generator [10], 
which takes a DTD as input, and produces documents that 
conform to that DTD, according to a set of workload parame-
ters. We use the default settings for all those parameters ex-
cept for the following three.  

DocDepth bounds the depth of element nesting in the 
generated XML documents. In this work, we are less con-
cerned with the absolute document depth, but rather, focus 
on the depth of recursive elements.  This is because docu-
ment depth mainly impacts path navigation, while deeply 
recursive data stresses the post-processing aspects of our 
solution by requiring DupElim and hash-based operators 
when “//” axes are used in queries.   

The parameter MaxRepeats determines the number of 
times an element can repeat in its parent element. We have 
modified the generator so that MaxRepeats can be varied on 
an individual element basis. A large value of MaxRepeats 
produces more matches of a query within a document, gener-
ating a larger result set for each matched query.   

The parameter MaxValue determines the number of val-
ues that the data of elements and attributes of elements can 
take, therefore affecting the selectivity of predicates.  

We also developed a query expression generator that uses 
the query workload parameters shown in Table 1. We ensure 
that all generated queries are unique. To so do, predicates in 
the where clause are sorted lexicographically. We also sort 
return paths, since two queries that are the same except the 
ordering of return paths can share most processing with only 
some trivial reordering at the end. Hashing on the query after 
path sorting is used to determine if it is unique. Predicates in 
the generated queries take values from a range of size Max-
Value, so this parameter determines the selectivity of predi-
cates. A large value of MaxValue produces fewer matches 
per query, but also can increase the number of unique queries 
for scalability evaluation. 

We report on experiments with two DTDs: the Bib and 
Book DTDs from the XQuery use cases[6].  The Bib DTD is 

GroupBy
GroupBy

GroupBy

collection of
streamsshared path matching engine

OuterJoin-Select OuterJoin-Select OuterJoin-Select

σ

DupElim

><

*
*

σ

DupElim

><

*
*

σ

DupElim

><

*
*

Figure 6: Shared post-processing example



 

  

used to generate non-recursive documents; the Book DTD is 
used to generate documents that can contain multiple levels 
of recursion. For each DTD, we generated a set of 200 docu-
ments using one setting of the workload parameters. For each 
run, 20 of these documents are used to warm up the JVM 
runtime compiler. Thus, all reported experimental results 
represent the average over 180 documents. For each experi-
ment, queries were generated according to a specific query 
workload setting. For a given experiment, each algorithm 
was run individually in a separate Java process. 
 

Parameter Values Description 
Q 5,000 – 

100,000 
The number of distinct queries. 

D1 2, 3 The maximum depth of a binding path 
PP 1 - 3 The number of predicate paths in a query 
RP 1 - 4 The number of return paths in a query 
D2 2 The maximum depth of predicate paths or 

the return paths 
DSProb 0 - 0.4 The probability of a “//” axis occurring in 

any location step in a path expression 

Table 1: Workload parameters for query generation 

The main performance metric we report is Multi-Query 
Processing Time (MQPT), which is defined as the time from 
the scan of a parsed document starting until the last result in 
the groupSequence-listSequence format is returned to the 
calling program. The cost of parsing is not included in our 
reported results, but was usually below 100 milliseconds.  

We also implemented a profiler that reports the cost of 
each operator for a run of an experiment. MQPT times re-
ported here were taken with the profiler turned off. Where 
appropriate, we use data from runs with profiling turned on 
to explain the performance results. Due to the overhead of 
running the profiler, the costs reported in this manner are 
higher than those observed in the actual experiments. 

6.2 Shared Path Matching – Non-recursive Data 
We first report on tests with the Bib DTD, which contains no 
recursion. For document generation, DocDepth was set to 4 
because the DTD allows at most four levels of element nest-
ing. We varied MaxRepeats such that in each document a bib 
element contains 20 books and each book has up to five au-
thors or editors. On average, each document contains 149 
start/end element pairs. MaxValue is set to 10. 

6.2.1 Expt. 1 – Basic performance  

In the first experiment, we compare the performance of the 
three approaches for moderate query loads (i.e., Q = 5000). 
In this experiment, queries were generated using the settings 
D1 = 2, PP = 1, RP = 2, D2 = 2, and DSProb = 0.2. Under 
this workload, a single where clause predicate is applied to 
book elements bound by the for clause. The return clause 
identifies two types of sub-elements from each remaining 
book element.  

We first ran the three approaches with no optimizations. 
The leftmost group of bars in Figure 7 (labeled “NoOpt”) 
shows their MQPT (in msec). In this case, PathSharing-FW 
has the lowest cost and PathSharing-FWR has the highest. 
PathSharing-FW outperforms PathSharing-F due to the 
shared path matching for all the predicates. Our profiler re-
ports that evaluating all predicate paths using tree search in 
PathSharing-F takes 386 ms, while for PathSharing-FW, the 

equivalent work takes only 231 ms (27ms for predicate path 
matching by the engine, 57ms for selection, and 147ms for 
semijoins). On the other hand, PathSharing-FW handles re-
turn paths using the tree-search based Return-Select operator, 
at a cost of 212ms, while PathSharing-FWR uses 648ms to 
perform the equivalent functionality using Outer Join-Selects 
(244ms) and DupElim for return paths (404ms) (note that 
there is almost no additional cost for processing the return 
paths by the engine). 

Next, we apply the optimizations described in Section 4. 
The results are shown in the middle and right groups in Fig-
ure 7, where Opt(q) indicates optimizations based only on 
queries and Opt(q+dtd) indicates those also using the DTD. 
For this latter case we also apply the path rewriting described 
in Section 5.1 to speed up path matching in the engine and in 
Where-Filter and Return-Select operators. We make the fol-
lowing observations: 

• The query-based optimizations improve performance for 
all alternatives, but particularly for those that exploit more 
path sharing. PathSharing-FWR benefits significantly, 
outperforming the other two in this case.  

• More sophisticated optimizations using the DTD enable 
further improvements for all three approaches. With these 
optimizations, PathSharing-FWR outperforms the others by a 
wide margin.  

More detailed results for PathSharing-FWR are shown in 
Table 2. Three operators, namely, DupElim, semijoin and 
OuterJoin-Select, particularly benefit from the optimizations. 
With opt(q), most of the DupElim cost is avoided and the 
costs of semijoin and OuterJoin-Select are more than halved. 
When the DTD is also utilized, DupElim is unnecessary, and 
semijoin and OuterJoin-Select only each require around 20 
ms. Note that the matching engine denoted as PME in the ta-
ble, is indeed a less dominant component of the overall cost. 

 

Operators PME Selection DupElim Semijoin OuterJoin 
No opt 28 61 451 140 235 
Opt (q) 27 51 15 67 112 
Opt (q+dtd) 9 42 0 18 22 

Table 2: Costs (ms) of operators (PathSharing-FWR) 

The reduced cost of the three operators is further ex-
plained by the change in the resulting query plans, as shown 
in Table 3. The improvement of DupElim arises because 
fewer such operators are needed with better optimization. 
The reduction in time for semijoin and OuterJoin-Select re-
sults from the ability to use merge-based implementations 
more often. For the Bib DTD, since no elements are on a 
DTD loop, Opt(q+dtd) can completely avoid DupElim and 
hash based implementations (as described in Section 4.1). 

 

Semijoin OuterJoin DupElim 
Operators 

#hash # merge #hash #merge #DupElim 

No opt 5000 0 5000 0 15000 
Opt (q) 1966 3034 1966 3034 429 
Opt(q+dtd) 0 5000 0 5000 0 

Table 3: Profile for 5000 queries (PathSharing-FWR) 

The above results demonstrate the effectiveness of the 
optimization techniques. In conjunction with these techni-
ques, PathSharing-FWR provides significantly better perfor-
mance than the other two alternatives, despite its more com-



 

  

plicated post-processing. Thus, the post-
processing optimizations help resolve 
the conflict between shared path process-
ing and customized result generation. 

6.2.2 Expt. 2 - Varying the number of 
predicates.  

In the next experiment, we vary the 
number of predicate paths (PP) from 1 to 
3. Increasing PP makes each query more 
selective in addition to requiring more 
predicates to be evaluated. Figure 8 
shows the results using Opt(q+dtd).  

The main observation is that more 
predicates reduce the differences among three alternatives. 
For alternatives using Return-Select, more predicates im-
prove their MQPT because the extra predicates reduce the 
number of query matches, resulting in much less work for 
Return-Select. These savings outweigh the modest increase 
in cost for predicate evaluation. An additional observation is 
that with three predicates in each query, only 116 matches 
were found for all 5000 queries, which explains why 
PathSharing-FW and PathSharing-FWR are so close at that 
point. In this workload, further increasing the number of 
predicate paths tends to result in no matches, so we stop in-
creasing this parameter here. 

6.2.3 Expt. 3 - Varying the number of return paths.  

Figure 9 shows the results obtained when the number of re-
turn paths in the queries is varied from 1 to 4.  Again, we 
show results only for the Opt(q+dtd) case. In this experiment, 
the MQPT of PathSharing-F and PathSharing-FW increases 
linearly because with the fixed query selectivity, more return 
paths require more executions of the tree search routine. 
PathSharing-FWR is much less sensitive to the increased 
workload, because the matching of the return paths is shared 
among 5000 queries. Also, by using a merge-based approach, 
OuterJoin-Selects are efficient even when the number of 
streams involved in the outer joins increases. 

6.3 Shared Path Matching – Recursive Data 
In the next set of experiments, we use the Book DTD to gen-
erate documents with recursive elements. DocDepth is set to 
5 so that we obtain up to four levels of nesting of section 
elements. MaxRepeats is set such that there are 12 top-level 
section elements in each book, and in each section, p (i.e., 
paragraph), figure, and section elements are allowed to re-

peat four times. The average document length is 83 start-end 
element pairs. MaxValue is set to 10.  

Figure 10 shows the MQPT of the three alternatives 
when queries were generated using the settings: Q = 10,000, 
D1 = 3, PP = 1, RP = 2, D2 = 2, DSProb = 0.2. Under this 
workload, the evaluation of the for clause can bind section, 
paragraph (p), or figure elements to the variable. The results 
are similar to those of the previous experiments except that 
with Opt(q), PathSharing-FWR is outperformed by Path 
Sharing-FW, and with Opt(q+dtd) the advantage of Path 
Sharing-FWR is less pronounced. 

We do not show the detailed cost breakdowns due to lack 
of space. The key points are that for PathSharing-FWR, the 
optimizations successfully reduce the DupElim cost, but the 
costs for semijoin and OuterJoin-Select remain high. This is 
due to the recursive section elements and the presence of “//” 
axes in the queries. In this situation, it is likely that path-
tuples generated for predicate paths and return paths are not 
ordered by the binding field. Consequently, many semijoins 
and outer joins must be hash based, even with Opt(q+dtd). 

Note that we also ran experiments varying the number of 
predicates and number of return paths for the Book DTD.  
The results are similar to those reported for the Bib DTD so  
we do not show them here. 

6.4 Scalability 
Next, we ran experiments to test the scalability of the ap-
proaches in terms of the number of queries (i.e., Q). Figure 
11 shows the MQPT for the three approaches with 
Opt(q+dtd), using Bib documents, as Q is varied from 5,000 
to 40,000.  In order to create a sufficient number of unique 
queries here, the MaxValue parameter was increased to 100 
for both document and query generation; the other parame-
ters are set as in the basic experiment, i.e., Expt. 1.  
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As can be seen in the Figure, the MQPT for all three 
approaches grows linearly with Q. Since the solutions stud-
ied in this experiment do not share any post-processing, such 
an increase is to be expected.  Note also that the rate of in-
crease is highest for PathSharing-F, which exploits the 
shared path matching engine the least.   

Similar results were obtained using the Book DTD, but 
with an even sharper increase in MQPT due to the additional 
impact of recursive data on post-processing costs. Table 4 
shows the detailed cost breakdown for PastSharing-FWR 
with Opt(q+dtd) in this case, as Q is varied from 10,000 to 
50,000. The increasing semijoin and OuterJoin-Select costs 
become dominant as Q increases, while the costs of selection 
and DupElim also increase. As we explained in Section 6.3, 
post-processing is more expensive for the Book DTD be-
cause of the need for hash-based operators.  
 
Q  10,000 20,000 30,000 40,000 50,000 
Selection 93 191 267 380 498 
DupElim 30 62 111 146 183 
Semijoin 137 320 484 659 847 
OuterJoin 163 364 592 810 1025 
Others … … … … … 
Executor  73 152 182 314 384 
Total 516 1111 1715 2344 2985 

Table 4: Costs(ms) as Q varies - PathSharing-FWR (Book DTD) 

6.5 On Shared Query Execution 
The results reported in the previous section demonstrated the 
scalability limitations of approaches that share only path 
matching work. In this section we examine the additional 
benefits to be gained by applying the techniques for sharing 
post-processing described in Section 5. 

In the following experiments, we first generated in-
dividual query plans for PathSharing-FWR with Opt(q+dtd). 
From these individual plans, we built shared execution plans 
using the three strategies from Section 5: pulling selections 
above joins, grouping selections, and using GroupBy on 
return paths for outer joins.  

We also rewrote the queries to increase commonality as 
described in Section 5.1. Two effects of this optimization 
were noticed. First, as expected, it does reduce the number of 
unique paths. Furthermore, we found that some previously 
unique queries could completely share a query plan because 
their signatures became identical after this rewriting. 

Here, we focus on results obtained using the (recursive) 
Book DTD (experiments with the Bib DTD tell a similar 
story). Figure 12 shows the MQPT of PathSharing-FWR 
without shared post-processing and with (labeled “Plan Shar-
ing”) as the number of unique query plans is varied from 
10,000 to 100,000 (note that “Q” is roughly 20% higher than 
this, but those queries sharing query plans with others do not 
incur extra cost in both algorithms here). As shown in the 
figure, shared post-processing leads to dramatic reductions in 
cost and concomitant improvements in scalability; The re-
sults here show the PlanSharing approach handling 100,000 
unique query plans in only 472ms. 

Table 5 shows the cost breakdown of PlanSharing. A 
comparison with Table 4 provides insight into the reduction 
of the overall cost, which results from four major factors: 

• The high cost of semijoins in PathSharing-FWR is re-
duced dramatically, because joins are now shared; 

• Grouped selections reduce the selection cost (note that 
the cost of scan-based DupElim is included in the selection 
numbers, because it is folded into the selection operator.) 

• OuterJoin-Selects are substantially cheaper, because the 
GroupBy technique removes redundant scanning and hashing 
at very little cost. Note that OuterJoin-Select is the only op-
erator that exhibits a noticeable increase, as in our current 
implementation, the outer joins themselves are not shared. 

• The cost of the Executor is also significantly reduced due 
to the reduction in query plan size. 
 
Q  10,000 20,000 30,000 40,000 50,000 
(Unique 
plans) 

(8,232) (16,482) (24,576) (32,736) (40,392) 

Selection 18 18 24 18 21 
GroupBy 4 3 5 6 5 
Join 18 19 19 21 17 
OuterJoin 29 58 81 117 138 
Others … … … … … 
Executor  7 16 22 28 37 
Total 105 156 212 264 317 

Table 5: Costs (ms) as Q varies - PlanSharing (Book DTD) 

6.6 Summary of Experiments 
The experiments reported here have examined the per-
formance of the three alternatives we proposed for exploiting 
a shared path matching engine to provide message broker 
functionality. We also investigated the performance of a suite 
of techniques to share for post-processing among queries. 
The results can be summarized as follows: 

• PathSharing-FWR when combined with optimizations 
based on queries and DTD usually provides the best per-
formance. This approach is the most aggressive of the three 
in terms of path sharing.   

• Without optimizations, however, PathSharing-FWR per-
forms quite poorly, due to high post-processing costs. 

• Optimization of query plans using query information 
improves the performance of all alternatives, and the 
addition of DTD-based optimizations improves them further. 

• For non-recursive data, DTD-based optimizations can 
remove all DupElim and hash-based operators. Recursive da-
ta, however, stresses the post-processing of queries contain-
ing “//” axes and limits the effectiveness of optimizations. 

• Finally, experiments on extending PathSharing-FWR 
with shared postprocessing showed excellent scalability im-
provements, allowing the processing of 100,000 queries in 
less than half a second. 
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7. Related work 
Our work on XML message brokering is related to Conti-
nuous Query (CQ) processing, publish/subscribe, XML fil-
tering, XML stream processing, and multi-query processing.  

CQ systems support shared processing of multiple stand-
ing queries over (typically non-XML) data streams. The con-
cept of expression signatures was introduced by TriggerMan 
[15]. Using such expression signatures, NiagaraCQ [4][5]  
incrementally groups query plans, and CACQ [19] supports 
the sharing of physical operators among tuples. OpenCQ 
[16] uses grouped triggers for CQ condition checking. Our 
techniques for sharing post-processing, though similar in 
spirit to those used in some of these systems, are developed 
particularly for XQuery processing.  

Publish/subscribe systems, e.g. Le Subscribe [12] and 
Xlyeme [21], match incoming events with a very large num-
ber of subscriptions each of which is typically a set of con-
junctive predicates. These systems use restricted query lan-
guages and data structures tailored to the query languages to 
achieve high system throughput. 

A number of XML filtering systems have been developed 
to efficiently match a large set of path queries with streaming 
documents. XFilter [1] builds a Finite State Machine (FSM) 
for each path query and employs a query index on all the 
FSMs to process all queries simultaneously. YFilter [8][11] 
has been described in section 2.3. XTrie [7] supports shared 
processing of the common sub-strings of path expressions 
which only contain parent-child operators. In [13], all path 
expressions are combined into a single DFA, resulting in 
good performance but with significant limitations on the 
flexibility of the approach. YFilter and Index-Filter are com-
pared through a detailed performance study in [3]. Match-
Maker [17] supports shared tree pattern matching using disk-
resident indexes on the tree patterns, with limited filtering 
performance. XPush [14] builds a pushdown automaton for a 
subset of tree-pattern queries, sharing both path navigation 
and predicate evaluation among them. It requires some pre-
computation of the machine to achieve good performance. 
As stated previously, these systems only provide the lowest 
level of functionality required by XML message brokers. 

In the context of XML stream processing, some other re-
cent work uses transducer based mechanisms for processing 
path expressions with qualifiers [22] or XQuery containing 
FLWR expressions [18]. These approaches, however, are 
developed for single query processing. 

Multi-query processing [23][24][27] considers small 
numbers of queries (e.g., 10’s) and uses heuristics to ap-
proximate the optimal global plan. In contrast, high-volume 
XML message brokering needs to handle sets of queries 
orders of magnitude larger in a dynamic environment. Thus, 
scalability of the approach and incremental construction of 
query plans are the major concerns unique to our work. 

8. Conclusions 
In this paper, we developed shared processing to support the 
customization of output in the context of high-capacity XML 
message brokering. We compared three different ways of 
exploiting a shared path matching engine for this purpose. 
Our results show that the most aggressive of the three in 

terms of path sharing performs best, when combined with 
optimizations based on the queries and DTD. Moreover, 
when post-processing is also shared among queries, excellent 
scalability can be achieved. 

We plan to extend our work in the following directions. 
First, we plan to support additional features such as ordering 
and aggregation in result customization. Second, it would be 
useful to investigate customization solutions based on shared 
tree pattern matching, once such technology is sufficiently 
developed. Finally, we will address the third major compo-
nent of the XML message broker through the investigation of 
content-based routing in an overlay network deployment.  
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